Analysis of survival of mesothelioma cases in the Italian register (ReNaM)

A. Marinaccioa,*, M. Nestia and Regional Operational Centersb

aDepartment of Occupational Medicine, Epidemiology unit, ISPESL- National Institute for Occupational Safety and Prevention, Via Alessandria 220/E, 00198 Rome, Italy

bRegional Operational Centers: Corrado Magnani, Cristina Ivaldi, Paola Dalmaso, Dario Mirabelli, Benedetto Terracini, Annalisa Todesco (Piedmont); Valerio Genmaro, Fabio Montanaro, Anna Lazzarotto, Monica Bianchelli, Maria Vittoria Celesia (Liguria); Silvia Candela, Antonio Romanelli, Lucia Mangone (Emilia-Romagna); Enzo Merler, Elisabetta Chellini, Giuseppe Gorini, Stefano Silvestri, Valentina Cacciarini (Tuscany); Marina Musti, Domenica Cavone (Puglia), Italy

Received 19 September 2002; received in revised form 19 December 2002; accepted 21 February 2003

Abstract

The Italian National Mesothelioma Register (ReNaM) was set up at ISPESL (the National Institute for Occupational Safety and Prevention) in 1993. Five Italian regions (Piedmont, Liguria, Emilia-Romagna, Tuscany and Puglia, with a total of approximately 17,500,000 inhabitants) agreed to record mesothelioma cases according to guidelines established by ISPESL, to define exposure to asbestos and transmit the data to ISPESL. We describe an analysis of survival of 429 mesothelioma cases—392 pleural, 34 peritoneal and 3 in the pericardium—diagnosed during 1997, with variable follow-up from June 1999 to December 2001. The Kaplan–Meier method was used to estimate survival rates, the log rank non-parametric test and Cox proportional hazard model to assess the role of prognostic factors such as age, gender, morphology, level of diagnostic certainty and modality of exposure. Median survival was 275 days (95% confidence interval (CI) 241–309) for pleural mesotheliomas and 157 days (95% CI: 118–196) for peritoneal mesotheliomas. Survival after diagnosis of malignant pleural mesothelioma showed a statistically significant linear trend for age group at diagnosis, for males and females ($P = 0.006$ and 0.008, respectively). The Cox proportional hazard model gave an adjusted relative risk (RR\textsubscript{adj}) for the fibrous histotype, of 2.96 (95% CI: 1.28–6.81; $P = 0.012$) compared with cases with unspecified morphology; for epithelioid and biphasic morphologies, the risk was lower than unity. There was no significant difference in survival for cases with confirmed exposure (occupational, household or environmental) or without.

Keywords: Mesothelioma; National register; Survival analysis; Prognostic factors

1. Introduction

Malignant mesothelioma (MM) is a highly lethal tumour with a low incidence, selectively induced by exposure to asbestos. It arises most frequently in the serous of the pleura and peritoneum, but cases have been reported in the pericardium and in the tunica vaginalis testicular. Incidence rates of mesothelioma, related to the large-scale use of asbestos in many industrial countries up until the 1980s, are rising and in view of the long latency of the disease—on average more than 30 years—this tendency can be expected to continue until at least 2020 [1,2].

In Italy, annual production of asbestos in the 1980s amounted to 100,000–130,000 tons and it was used in numerous industrial applications. Between 1988 and 1997, a total of 9094 deaths from tumours of the pleura were recorded, giving a standardised annual rate of 1.61 per 100,000 inhabitants. The incidence figures recorded by the Italian national tumour register show some parts of Italy, such as the provinces of Trieste and Genoa, where the rates are among the highest in the world (annual rates are 6.4 and 5.0, respectively for males, standardised to the world population) [3,4].

The Italian National Mesothelioma Register (ReNaM) was set up in 1993 at the Istituto Superiore
Prevenzione e Sicurezza Lavoro (National Institute for Occupational Safety and Prevention—ISPESL). Some Italian regions already had a system for active notification of cases and reconstruction of the exposure to asbestos. In 1988, Tuscany set up the Archivio Regionale Toscano dei Mesoteliomi Malgini (Tuscan Regional Archives of Malignant Mesotheliomas) which operates throughout that region [5]. In 1989, Puglia set up a regional register for cases of mesothelioma [6], and 1990 saw the start of the Piedmontese Mesothelioma Register [7]. In Liguria and Emilia-Romagna epidemiological surveillance started at municipal level; Genoa followed in 1994, after Reggio Emilia, in 1993, then in 1996 it was extended to the whole region [8,9].

ReNaM published figures for incidence and asbestos exposure for the period from 1993 to 1996 and for the year 1997 for these five regions, which covers approximately 40% of the Italian population and 45% of the annual mortality from pleural tumours [10]. Since then Regional Operational Centers (COR) have been set up in Lombardy, Veneto, Sicily, Basilicata, the Marches and Campania, extending the ReNaM coverage to more than 80% of the resident population.

There is no absolute concordance between published studies of the prognostic factors in malignant pleural mesothelioma and opinions differ on how asbestos exposure influences survival [11–13]. The aim of this study was therefore to present data on survival of incident cases of malignant mesothelioma in 1997 for the five Italian Regions listed, in order to add to the epidemiological picture obtained from clinical studies and to help establish the prognostic role of the main demographic factors (gender, age) and diagnostic and exposure variables (morphology, level of diagnostic certainty, modality of exposure).

2. Patients and methods

Cases are collected by the COR from health care institutions in each region that diagnose and treat cases of mesothelioma. These include pathology and histology units, lung disease and chest surgery wards. Hospital discharge records and death certificates are consulted to check that all available information has been collected. Reference diagnostic protocols are used to standardise the diagnostic criteria for mesothelioma, and cases are classified depending on the level of diagnostic certainty achieved.

Occupational history, lifestyle habits and areas of residence for each case are obtained by interviewing people directly or, if they are not available, someone close to them (indirect interview) who can provide information on the case’s work and life history, using a standard questionnaire, administered by a trained interviewer.

Exposure is classified by an industrial hygienist who consults the available documents and applies his own knowledge of industrial conditions to establish whether the subject’s work, private life or any particular environmental conditions could have involved exposure to asbestos. Exposure is classified using the standard grid in accordance with national guidelines [10].

We analysed information on survival of 429 cases of malignant mesothelioma diagnosed in 1997 in Piedmont (136), Liguria (135), Emilia-Romagna (72), Tuscany (45), and Puglia (41), with follow-up from June 1999 to December 2001. Of these, 392 were pleural, 34 peritoneal and 3 pericardial. For 20 cases, we could not establish whether they were still alive, and 38 were still alive at the last check (Table 1).

The data presented refer to survival at six months, one, two, three and four years, by site and gender. Survival was calculated by the actuarial method at monthly intervals, and median survival with confidence intervals (CI) was obtained by the Kaplan–Meier method.

We established the significance of differences in the distribution of survival by gender and register using the non-parametric log rank test, adjusted for age. The log rank test was also used to check for a linear trend in survival in relation to age in three brackets (up to 64, 65–74, more than 74 years). We used Cox’s proportional hazard model to assess how histotype, level of diagnostic certainty and modality of exposure influenced mesothelioma survival.

We estimated the relative risk (adjusted for all the other variables), for gender, age group, and cases with bifasic, fibrous or epithelioid forms, compared with non-specified ones; for cases with a diagnosis of suspected MM compared with definite mesothelioma, and for cases with exposure to asbestos (definite, probable or possible occupational, household or environmental) compared with those with unknown or unlikely exposure (after reconstructing the working and environmental history by direct interviews or interviews with someone living with the case). The goodness of fit of the model to empirical data was assessed using the log likelihood test. All statistical analyses were done using the Statistical Package for the Social Sciences (SPSS) (version 10.0).

3. Results

Median survival of incident cases in 1997 was 275 days (279 (95% CI: 245–313) for males and 263 (95% CI: 184–342) for females) for pleural mesothelioma (n = 392) with 95% CI of 241–309; for peritoneal mesothelioma (n = 34) it was 157 days (148 (95% CI: 84–212) for males and 252 (95% CI: 0–551) for females), with 95% CI of 118–196 (Table 2). The difference in the distribution of survival by gender adjusted for age was not significant for pleural mesothelioma (log rank
test = 0.01; \(P = 0.91 \) and for peritoneal (log rank test = 1.42; \(P = 0.23 \)). There were three cases of mesothelioma of the pericardium (two females and one male) who died less than a year from diagnosis. For Tuscany and Puglia number of cases is too small (4 and 1 respectively) for a reliable estimate.

Survival after a diagnosis of malignant tumour of the pleura showed a significant linear trend for age at diagnosis, for both males and females (log rank test 10.42; \(P = 0.006 \), and 9.60; \(P = 0.008 \), respectively); the median survival for pleural mesothelioma in males was 312 days (95% CI: 245–379) for the 0–64 year age group, 286 (95% CI: 216–356) for those aged 65–74 years and 151 (95% CI: 116–186) for those 75+ years (375 (95% CI: 136–615), 225 (95% CI: 130–320), 89 (95% CI: 0–195), respectively in females) (Fig. 1). The trend was not significant for patients with peritoneal mesothelioma.

Analysis by register of origin showed the median survival for pleural mesotheliomas ranged from 225 days (95% CI: 145–303) for Piedmont, to 291 days (95% CI: 242–304) for Tuscany and 296 (95% CI: 242–343) for Liguria, with, in between, 240 days (95% CI: 78–339) for Puglia and 251 (95% CI: 182–320) for Emilia-Romagna. This variability did not reach statistical significance (log rank test adjusted for age = 2.14; \(P = 0.71 \)).

For peritoneal mesotheliomas, median survival of the 14 cases in Piedmont was 150 days (95% CI: 10–289), 135 days (95% CI: 0–316) for the 7 cases in Liguria and 120 days (95% CI: 86–153) for 8 cases in Emilia-Romagna.

The histological type of pleural mesothelioma was not specified in 46% of cases (179/392). Most of those specified were epithelioid (162), with 28 and 23 cases of biphasic and fibrous disease, respectively. Peritoneal mesothelioma were epithelioid in 16 of the 17 definite cases. Survival was strongly correlated with morphology (Fig. 2). The log rank test adjusted for age induced us to refute the hypothesis of survival being independent of histological type, with a 0.01% probability of error.

For the 1997 incident cases of pleural mesothelioma in the ReNaM, Cox’s proportional hazard model gave a relative risk adjusted for fibrous histotype almost three times that for cases with unspecified morphology (\(P = 0.012 \)); the risk for cases with epithelioid or biphasic morphology was lower than unity. Linear trend for age is confirmed by the results of the Cox model.

Exposure to asbestos was not decisive for survival, which for exposed cases (occupational, household or environmental) was much the same as for cases without confirmed exposure (adjusted relative risk (RRadj) = 1.11; \(P = 0.6 \)). The risk was significantly higher for cases with a diagnosis of suspected mesothelioma (RRadj = 1.85; \(P = 0.01 \)) than for those with a definite diagnosis (Table 3).

4. Discussion

The ReNaM survival figures give a good representation of the situation, based on an active system of seeking cases, with standard tools and methods, covering a
Fig. 1. Kaplan–Meier survival curve for pleural mesothelioma cases by age (0–64, 65–74, 75+ years).

Fig. 2. Kaplan–Meier survival curve for pleural mesothelioma cases by histological subtype (epithelioid, biphasic, fibrous).
good proportion of the country (approximately 17,514,000 residents in 1999). However, it does not allow a complete assessment of its determinants. No information is available on the stage of the disease at diagnosis, or its treatment, and these variables are obviously essential if one is to assess the efficacy of treatment and interpret the factors involved in differences in survival. Quantitative data alone also provides no information on the patient’s quality of life.

However, despite these limits the data do permit an estimate of the general level of survival by age, gender and site, and give indications on the possible role of prognostic variables such as histotype and level of diagnostic certainty. In addition, individual reconstruction of the modalities of exposure to asbestos enabled us to test—keeping the contribution of other variables constant—the utility of this historical data, which is rarely available for populations of this size. The completeness of follow-up was satisfactory, with only 5.1% (20/392) of cases lost.

Survival at one and three years from diagnosis of pleural mesothelioma (35.3 and 7.1% in the ReNaM caselist) was very similar to that reported for 740 pleural tumours (ICD-IX 163) collected by the Italian network of population tumour registers between 1990 and 1994 [14–17]. Median survival for pleural mesothelioma was longer than the seven months reported in the USA by the Surveillance, Epidemiology and End Results (SEER) study, for cases diagnosed between 1973 and 1984 [18] and also longer than the eight months in the Australian Mesothelioma Register [12]. The peritoneal mesothelioma survival in our cases is in line with a statistical significance.

Histological type is therefore a basic prognostic factor, as has already been reported in Refs. [11,20–23]. The risk for cases with epithelioid or biphasic pleural mesothelioma is more than three times lower than for those with fibrous morphology.

Diagnostic certainty also appears to have implications for survival: cases with a diagnosis of suspected MM seemed to have a higher risk—almost double that of cases with a definite diagnosis. In practice, this factor should be viewed as being related to the patient’s general condition, as there is a recognised tendency to avoid invasive instrumental investigations in patients with advanced disease, and precarious health.

In a specialised mesothelioma register, reconstruction of the modalities of exposure to asbestos is fundamental. We were able to rebuild the occupational and residential history for 198 cases out of 429 (46%) which, although not exhaustive, is nevertheless sufficient to verify whether the modality of exposure influences survival. The reconstruction of the modality of exposure is made difficult by the long latency period of the disease (generally more than 30 years) and the variety of occupations involved. Comparing survival of cases with confirmed exposure—occupational, household or environmental—and those with a known occupational and residential history, but not confirmed exposure, we could find no appreciable differences; this finding is remarkable considering the sample size and the modality of reconstruction of exposure by a direct or indirect interview. Our findings therefore do not confirm the shorter survival for cases with previous exposure in naval shipyards which was reported by the USA SEER study.
To conclude, therefore, age at diagnosis, histological type and level of diagnostic certainty (when the stage of disease is not known) appear to be significant prognostic factors for mesothelioma. The assessment of the role of asbestos exposure in this study refers only to the occupational sector in which a case was exposed, and would be more complete if the amount of fibres inhaled could also be estimated. Any judgement on the efficacy of various therapies must take account of these prognostic factors.

References